The Road to Know-Where: An Object-and-Room Informed Sequential BERT for Indoor Vision-Language Navigation

Vision-and-Language Navigation (VLN) requires an agent to find a path to a remote location on the basis of natural-language instructions and a set of photo-realistic panoramas. Most existing methods take the words in the instructions and the discrete views of each panorama as the minimal unit of encoding. However, this requires a model to match different nouns (e.g., TV, table) against the same input view feature. In this work, we propose an object-informed sequential BERT to encode visual perceptions and linguistic instructions at the same fine-grained level, namely objects and words. Our sequential BERT also enables the visual-textual clues to be interpreted in light of the temporal context, which is crucial to multi-round VLN tasks. Additionally, we enable the model to identify the relative direction (e.g., left/right/front/back) of each navigable location and the room type (e.g., bedroom, kitchen) of its current and final navigation goal, as such information is widely mentioned in instructions implying the desired next and final locations. We thus enable the model to know-where the objects lie in the images, and to know-where they stand in the scene. Extensive experiments demonstrate the effectiveness compared against several state-of-the-art methods on three indoor VLN tasks: REVERIE, NDH, and R2R. Project repository:

PDF Abstract ICCV 2021 PDF ICCV 2021 Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.