Knowledge Guided Metric Learning for Few-Shot Text Classification

The training of deep-learning-based text classification models relies heavily on a huge amount of annotation data, which is difficult to obtain. When the labeled data is scarce, models tend to struggle to achieve satisfactory performance. However, human beings can distinguish new categories very efficiently with few examples. This is mainly due to the fact that human beings can leverage knowledge obtained from relevant tasks. Inspired by human intelligence, we propose to introduce external knowledge into few-shot learning to imitate human knowledge. A novel parameter generator network is investigated to this end, which is able to use the external knowledge to generate relation network parameters. Metrics can be transferred among tasks when equipped with these generated parameters, so that similar tasks use similar metrics while different tasks use different metrics. Through experiments, we demonstrate that our method outperforms the state-of-the-art few-shot text classification models.

PDF Abstract NAACL 2021 PDF NAACL 2021 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here