KorMedMCQA: Multi-Choice Question Answering Benchmark for Korean Healthcare Professional Licensing Examinations

3 Mar 2024  ·  Sunjun Kweon, Byungjin Choi, Minkyu Kim, Rae Woong Park, Edward Choi ·

We introduce KorMedMCQA, the first Korean multiple-choice question answering (MCQA) benchmark derived from Korean healthcare professional licensing examinations, covering from the year 2012 to year 2023. This dataset consists of a selection of questions from the license examinations for doctors, nurses, and pharmacists, featuring a diverse array of subjects. We conduct baseline experiments on various large language models, including proprietary/open-source, multilingual/Korean-additional pretrained, and clinical context pretrained models, highlighting the potential for further enhancements. We make our data publicly available on HuggingFace (https://huggingface.co/datasets/sean0042/KorMedMCQA) and provide a evaluation script via LM-Harness, inviting further exploration and advancement in Korean healthcare environments.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here