Large-Scale Study of Perceptual Video Quality

5 Mar 2018  ·  Zeina Sinno, Alan C. Bovik ·

The great variations of videographic skills, camera designs, compression and processing protocols, and displays lead to an enormous variety of video impairments. Current no-reference (NR) video quality models are unable to handle this diversity of distortions. This is true in part because available video quality assessment databases contain very limited content, fixed resolutions, were captured using a small number of camera devices by a few videographers and have been subjected to a modest number of distortions. As such, these databases fail to adequately represent real world videos, which contain very different kinds of content obtained under highly diverse imaging conditions and are subject to authentic, often commingled distortions that are impossible to simulate. As a result, NR video quality predictors tested on real-world video data often perform poorly. Towards advancing NR video quality prediction, we constructed a large-scale video quality assessment database containing 585 videos of unique content, captured by a large number of users, with wide ranges of levels of complex, authentic distortions. We collected a large number of subjective video quality scores via crowdsourcing. A total of 4776 unique participants took part in the study, yielding more than 205000 opinion scores, resulting in an average of 240 recorded human opinions per video. We demonstrate the value of the new resource, which we call the LIVE Video Quality Challenge Database (LIVE-VQC), by conducting a comparison of leading NR video quality predictors on it. This study is the largest video quality assessment study ever conducted along several key dimensions: number of unique contents, capture devices, distortion types and combinations of distortions, study participants, and recorded subjective scores. The database is available for download on this link: .

PDF Abstract
No code implementations yet. Submit your code now


Introduced in the Paper:


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here