Latent Coincidence Analysis: A Hidden Variable Model for Distance Metric Learning

NeurIPS 2012  ·  Matthew Der, Lawrence K. Saul ·

We describe a latent variable model for supervised dimensionality reduction and distance metric learning. The model discovers linear projections of high dimensional data that shrink the distance between similarly labeled inputs and expand the distance between differently labeled ones. The model’s continuous latent variables locate pairs of examples in a latent space of lower dimensionality. The model differs significantly from classical factor analysis in that the posterior distribution over these latent variables is not always multivariate Gaussian. Nevertheless we show that inference is completely tractable and derive an Expectation-Maximization (EM) algorithm for parameter estimation. We also compare the model to other approaches in distance metric learning. The model’s main advantage is its simplicity: at each iteration of the EM algorithm, the distance metric is re-estimated by solving an unconstrained least-squares problem. Experiments show that these simple updates are highly effective.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here