Latent Template Induction with Gumbel-CRFs

Learning to control the structure of sentences is a challenging problem in text generation. Existing work either relies on simple deterministic approaches or RL-based hard structures... We explore the use of structured variational autoencoders to infer latent templates for sentence generation using a soft, continuous relaxation in order to utilize reparameterization for training. Specifically, we propose a Gumbel-CRF, a continuous relaxation of the CRF sampling algorithm using a relaxed Forward-Filtering Backward-Sampling (FFBS) approach. As a reparameterized gradient estimator, the Gumbel-CRF gives more stable gradients than score-function based estimators. As a structured inference network, we show that it learns interpretable templates during training, which allows us to control the decoder during testing. We demonstrate the effectiveness of our methods with experiments on data-to-text generation and unsupervised paraphrase generation. read more

PDF Abstract NeurIPS 2020 PDF NeurIPS 2020 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.