Learning a Discriminative Prior for Blind Image Deblurring

We present an effective blind image deblurring method based on a data-driven discriminative prior.Our work is motivated by the fact that a good image prior should favor clear images over blurred images.In this work, we formulate the image prior as a binary classifier which can be achieved by a deep convolutional neural network (CNN).The learned prior is able to distinguish whether an input image is clear or not.Embedded into the maximum a posterior (MAP) framework, it helps blind deblurring in various scenarios, including natural, face, text, and low-illumination images.However, it is difficult to optimize the deblurring method with the learned image prior as it involves a non-linear CNN.Therefore, we develop an efficient numerical approach based on the half-quadratic splitting method and gradient decent algorithm to solve the proposed model.Furthermore, the proposed model can be easily extended to non-uniform deblurring.Both qualitative and quantitative experimental results show that our method performs favorably against state-of-the-art algorithms as well as domain-specific image deblurring approaches.

PDF Abstract CVPR 2018 PDF CVPR 2018 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here