Learning a Distance Metric from a Network

NeurIPS 2011  ·  Blake Shaw, Bert Huang, Tony Jebara ·

Many real-world networks are described by both connectivity information and features for every node. To better model and understand these networks, we present structure preserving metric learning (SPML), an algorithm for learning a Mahalanobis distance metric from a network such that the learned distances are tied to the inherent connectivity structure of the network. Like the graph embedding algorithm structure preserving embedding, SPML learns a metric which is structure preserving, meaning a connectivity algorithm such as k-nearest neighbors will yield the correct connectivity when applied using the distances from the learned metric. We show a variety of synthetic and real-world experiments where SPML predicts link patterns from node features more accurately than standard techniques. We further demonstrate a method for optimizing SPML based on stochastic gradient descent which removes the running-time dependency on the size of the network and allows the method to easily scale to networks of thousands of nodes and millions of edges.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here