Learning Fair Ranking Policies via Differentiable Optimization of Ordered Weighted Averages

7 Feb 2024  ·  My H. Dinh, James Kotary, Ferdinando Fioretto ·

Learning to Rank (LTR) is one of the most widely used machine learning applications. It is a key component in platforms with profound societal impacts, including job search, healthcare information retrieval, and social media content feeds. Conventional LTR models have been shown to produce biases results, stimulating a discourse on how to address the disparities introduced by ranking systems that solely prioritize user relevance. However, while several models of fair learning to rank have been proposed, they suffer from deficiencies either in accuracy or efficiency, thus limiting their applicability to real-world ranking platforms. This paper shows how efficiently-solvable fair ranking models, based on the optimization of Ordered Weighted Average (OWA) functions, can be integrated into the training loop of an LTR model to achieve favorable balances between fairness, user utility, and runtime efficiency. In particular, this paper is the first to show how to backpropagate through constrained optimizations of OWA objectives, enabling their use in integrated prediction and decision models.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here