Learning from Noisy Labels with Distillation

The ability of learning from noisy labels is very useful in many visual recognition tasks, as a vast amount of data with noisy labels are relatively easy to obtain. Traditionally, the label noises have been treated as statistical outliers, and approaches such as importance re-weighting and bootstrap have been proposed to alleviate the problem. According to our observation, the real-world noisy labels exhibit multi-mode characteristics as the true labels, rather than behaving like independent random outliers. In this work, we propose a unified distillation framework to use side information, including a small clean dataset and label relations in knowledge graph, to "hedge the risk" of learning from noisy labels. Furthermore, unlike the traditional approaches evaluated based on simulated label noises, we propose a suite of new benchmark datasets, in Sports, Species and Artifacts domains, to evaluate the task of learning from noisy labels in the practical setting. The empirical study demonstrates the effectiveness of our proposed method in all the domains.

PDF Abstract ICCV 2017 PDF ICCV 2017 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here