Paper

Learning Implicit Generative Models with Theoretical Guarantees

We propose a \textbf{uni}fied \textbf{f}ramework for \textbf{i}mplicit \textbf{ge}nerative \textbf{m}odeling (UnifiGem) with theoretical guarantees by integrating approaches from optimal transport, numerical ODE, density-ratio (density-difference) estimation and deep neural networks. First, the problem of implicit generative learning is formulated as that of finding the optimal transport map between the reference distribution and the target distribution, which is characterized by a totally nonlinear Monge-Amp\`{e}re equation... (read more)

Results in Papers With Code
(↓ scroll down to see all results)