Learning Keypoints for Robotic Cloth Manipulation using Synthetic Data

3 Jan 2024  ·  Thomas Lips, Victor-Louis De Gusseme, Francis wyffels ·

Assistive robots should be able to wash, fold or iron clothes. However, due to the variety, deformability and self-occlusions of clothes, creating general-purpose robot systems for cloth manipulation is challenging. Synthetic data is a promising direction to improve generalization, though its usability is often limited by the sim-to-real gap. To advance the use of synthetic data for cloth manipulation and to enable tasks such as robotic folding, we present a synthetic data pipeline to train keypoint detectors for almost flattened cloth items. To test its performance, we have also collected a real-world dataset. We train detectors for both T-shirts, towels and shorts and obtain an average precision of 64.3%. Fine-tuning on real-world data improves performance to 74.2%. Additional insight is provided by discussing various failure modes of the keypoint detectors and by comparing different approaches to obtain cloth meshes and materials. We also quantify the remaining sim-to-real gap and argue that further improvements to the fidelity of cloth assets will be required to further reduce this gap. The code, dataset and trained models are available online.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here