Learning Paths from Signature Tensors

5 Sep 2018  ·  Max Pfeffer, Anna Seigal, Bernd Sturmfels ·

Matrix congruence extends naturally to the setting of tensors. We apply methods from tensor decomposition, algebraic geometry and numerical optimization to this group action. Given a tensor in the orbit of another tensor, we compute a matrix which transforms one to the other. Our primary application is an inverse problem from stochastic analysis: the recovery of paths from their third order signature tensors. We establish identifiability results, both exact and numerical, for piecewise linear paths, polynomial paths, and generic dictionaries. Numerical optimization is applied for recovery from inexact data. We also compute the shortest path with a given signature tensor.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here