Learning the Local Statistics of Optical Flow

Motivated by recent progress in natural image statistics, we use newly available datasets with ground truth optical flow to learn the local statistics of optical flow and rigorously compare the learned model to prior models assumed by computer vision optical flow algorithms. We find that a Gaussian mixture model with 64 components provides a significantly better model for local flow statistics when compared to commonly used models... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet