Learning the Valuations of a $k$-demand Agent

ICML 2020  ·  Hanrui Zhang, Vincent Conitzer ·

We study problems where a learner aims to learn the valuations of an agent by observing which goods he buys under varying price vectors. More specifically, we consider the case of a $k$-demand agent, whose valuation over the goods is additive when receiving up to $k$ goods, but who has no interest in receiving more than $k$ goods. We settle the query complexity for the active-learning (preference elicitation) version, where the learner chooses the prices to post, by giving a {\em biased binary search} algorithm, generalizing the classical binary search procedure. We complement our query complexity upper bounds by lower bounds that match up to lower-order terms. We also study the passive-learning version in which the learner does not control the prices, and instead they are sampled from some distribution. We show that in the PAC model for passive learning, any {\em empirical risk minimizer} has a sample complexity that is optimal up to a factor of $\widetilde{O}(k)$.

PDF ICML 2020 PDF
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here