Least Probable Disagreement Region for Active Learning

1 Jan 2021  ·  Seong Jin Cho, Gwangsu Kim, Chang D. Yoo ·

Active learning strategy to query unlabeled samples nearer the estimated decision boundary at each step has been known to be effective when the distance from the sample data to the decision boundary can be explicitly evaluated; however, in numerous cases in machine learning, especially when it involves deep learning, conventional distance such as the $\ell_p$ from sample to decision boundary is not readily measurable. This paper defines a theoretical distance of unlabeled sample to the decision boundary as the least probable disagreement region (LPDR) containing the unlabeled sample, and it discusses how this theoretical distance can be empirically evaluated with a lower order of time complexity. Monte Carlo sampling of the hypothesis is performed in approximating the theoretically defined distance. Experimental results on various datasets show that the proposed algorithm consistently outperforms all other high performing uncertainty based active learning algorithms and leads to state-of-the-art active learning performance on CIFAR10, CIFAR100, Tiny ImageNet and Food101 datasets. Only the proposed algorithm outperforms random sampling on CIFAR100 dataset using K-CNN while all other algorithms fail to do so.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here