Lessons from Contextual Bandit Learning in a Customer Support Bot

In this work, we describe practical lessons we have learned from successfully using contextual bandits (CBs) to improve key business metrics of the Microsoft Virtual Agent for customer support. While our current use cases focus on single step einforcement learning (RL) and mostly in the domain of natural language processing and information retrieval we believe many of our findings are generally applicable. Through this article, we highlight certain issues that RL practitioners may encounter in similar types of applications as well as offer practical solutions to these challenges.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here