Lifelong Bayesian Optimization

29 May 2019  ·  Yao Zhang, James Jordon, Ahmed M. Alaa, Mihaela van der Schaar ·

Automatic Machine Learning (Auto-ML) systems tackle the problem of automating the design of prediction models or pipelines for data science. In this paper, we present Lifelong Bayesian Optimization (LBO), an online, multitask Bayesian optimization (BO) algorithm designed to solve the problem of model selection for datasets arriving and evolving over time. To be suitable for "lifelong" Bayesian Optimization, an algorithm needs to scale with the ever increasing number of acquisitions and should be able to leverage past optimizations in learning the current best model. We cast the problem of model selection as a black-box function optimization problem. In LBO, we exploit the correlation between functions by using components of previously learned functions to speed up the learning process for newly arriving datasets. Experiments on real and synthetic data show that LBO outperforms standard BO algorithms applied repeatedly on the data.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here