LIIR: Learning Individual Intrinsic Reward in Multi-Agent Reinforcement Learning

NeurIPS 2019 Yali DuLei HanMeng FangJi LiuTianhong DaiDacheng Tao

A great challenge in cooperative decentralized multi-agent reinforcement learning (MARL) is generating diversified behaviors for each individual agent when receiving only a team reward. Prior studies have paid much effort on reward shaping or designing a centralized critic that can discriminatively credit the agents... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet