Logsmooth Gradient Concentration and Tighter Runtimes for Metropolized Hamiltonian Monte Carlo

10 Feb 2020  ·  Yin Tat Lee, Ruoqi Shen, Kevin Tian ·

We show that the gradient norm $\|\nabla f(x)\|$ for $x \sim \exp(-f(x))$, where $f$ is strongly convex and smooth, concentrates tightly around its mean. This removes a barrier in the prior state-of-the-art analysis for the well-studied Metropolized Hamiltonian Monte Carlo (HMC) algorithm for sampling from a strongly logconcave distribution. We correspondingly demonstrate that Metropolized HMC mixes in $\tilde{O}(\kappa d)$ iterations, improving upon the $\tilde{O}(\kappa^{1.5}\sqrt{d} + \kappa d)$ runtime of (Dwivedi et. al. '18, Chen et. al. '19) by a factor $(\kappa/d)^{1/2}$ when the condition number $\kappa$ is large. Our mixing time analysis introduces several techniques which to our knowledge have not appeared in the literature and may be of independent interest, including restrictions to a nonconvex set with good conductance behavior, and a new reduction technique for boosting a constant-accuracy total variation guarantee under weak warmness assumptions. This is the first high-accuracy mixing time result for logconcave distributions using only first-order function information which achieves linear dependence on $\kappa$; we also give evidence that this dependence is likely to be necessary for standard Metropolized first-order methods.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here