Lower Bounds for Exact Model Counting and Applications in Probabilistic Databases

26 Sep 2013  ·  Paul Beame, Jerry Li, Sudeepa Roy, Dan Suciu ·

The best current methods for exactly computing the number of satisfying assignments, or the satisfying probability, of Boolean formulas can be seen, either directly or indirectly, as building 'decision-DNNF' (decision decomposable negation normal form) representations of the input Boolean formulas. Decision-DNNFs are a special case of 'd-DNNF's where 'd' stands for 'deterministic'... We show that any decision-DNNF can be converted into an equivalent 'FBDD' (free binary decision diagram) -- also known as a 'read-once branching program' (ROBP or 1-BP) -- with only a quasipolynomial increase in representation size in general, and with only a polynomial increase in size in the special case of monotone k-DNF formulas. Leveraging known exponential lower bounds for FBDDs, we then obtain similar exponential lower bounds for decision-DNNFs which provide lower bounds for the recent algorithms. We also separate the power of decision-DNNFs from d-DNNFs and a generalization of decision-DNNFs known as AND-FBDDs. Finally we show how these imply exponential lower bounds for natural problems associated with probabilistic databases. read more

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here