Machine learning refinement of in situ images acquired by low electron dose LC-TEM

31 Oct 2023  ·  Hiroyasu Katsuno, Yuki Kimura, Tomoya Yamazaki, Ichigaku Takigawa ·

We study a machine learning (ML) technique for refining images acquired during in situ observation using liquid-cell transmission electron microscopy (LC-TEM). Our model is constructed using a U-Net architecture and a ResNet encoder. For training our ML model, we prepared an original image dataset that contained pairs of images of samples acquired with and without a solution present. The former images were used as noisy images and the latter images were used as corresponding ground truth images. The number of pairs of image sets was $1,204$ and the image sets included images acquired at several different magnifications and electron doses. The trained model converted a noisy image into a clear image. The time necessary for the conversion was on the order of 10ms, and we applied the model to in situ observations using the software Gatan DigitalMicrograph (DM). Even if a nanoparticle was not visible in a view window in the DM software because of the low electron dose, it was visible in a successive refined image generated by our ML model.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods