Many Languages, One Parser

TACL 2016 Waleed AmmarGeorge MulcaireMiguel BallesterosChris DyerNoah A. Smith

We train one multilingual model for dependency parsing and use it to parse sentences in several languages. The parsing model uses (i) multilingual word clusters and embeddings; (ii) token-level language information; and (iii) language-specific features (fine-grained POS tags)... (read more)

PDF Abstract TACL 2016 PDF TACL 2016 Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet