Markus Thill Temporal convolutional autoencoder for unsupervised anomaly detection in time series

Learning temporal patterns in time series remains a challenging task up until today. Particularly for anomaly detection in time series, it is essential to learn the underlying structure of a system’s normal behavior. Periodic or quasiperiodic signals with complex temporal patterns make the problem even more challenging: Anomalies may be a hard-to-detect deviation from the normal recurring pattern. In this paper, we present TCN-AE, a temporal convolutional network autoencoder based on dilated convolutions. Contrary to many other anomaly detection algorithms, TCN-AE is trained in an unsupervised manner. The algorithm demonstrates its efficacy on a comprehensive real-world anomaly benchmark comprising electrocardiogram (ECG) recordings of patients with cardiac arrhythmia. TCN-AE significantly outperforms several other unsupervised state-of-the-art anomaly detection algorithms. Moreover, we investigate the contribution of the individual enhancements and show that each new ingredient improves the overall performance on the investigated benchmark.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here