Measuring Mother-Infant Emotions By Audio Sensing

10 Dec 2019  ·  Xuewen Yao, Dong He, Tiancheng Jing, Kaya de Barbaro ·

It has been suggested in developmental psychology literature that the communication of affect between mothers and their infants correlates with the socioemotional and cognitive development of infants. In this study, we obtained day-long audio recordings of 10 mother-infant pairs in order to study their affect communication in speech with a focus on mother's speech. In order to build a model for speech emotion detection, we used the Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) and trained a Convolutional Neural Nets model which is able to classify 6 different emotions at 70% accuracy. We applied our model to mother's speech and found the dominant emotions were angry and sad, which were not true. Based on our own observations, we concluded that emotional speech databases made with the help of actors cannot generalize well to real-life settings, suggesting an active learning or unsupervised approach in the future.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here