Memory-Sample Tradeoffs for Linear Regression with Small Error

18 Apr 2019Vatsal SharanAaron SidfordGregory Valiant

We consider the problem of performing linear regression over a stream of $d$-dimensional examples, and show that any algorithm that uses a subquadratic amount of memory exhibits a slower rate of convergence than can be achieved without memory constraints. Specifically, consider a sequence of labeled examples $(a_1,b_1), (a_2,b_2)\ldots,$ with $a_i$ drawn independently from a $d$-dimensional isotropic Gaussian, and where $b_i = \langle a_i, x\rangle + \eta_i,$ for a fixed $x \in \mathbb{R}^d$ with $\|x\|_2 = 1$ and with independent noise $\eta_i$ drawn uniformly from the interval $[-2^{-d/5},2^{-d/5}].$ We show that any algorithm with at most $d^2/4$ bits of memory requires at least $\Omega(d \log \log \frac{1}{\epsilon})$ samples to approximate $x$ to $\ell_2$ error $\epsilon$ with probability of success at least $2/3$, for $\epsilon$ sufficiently small as a function of $d$... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper