Meta Two-Sample Testing: Learning Kernels for Testing with Limited Data

Modern kernel-based two-sample tests have shown great success in distinguishing complex, high-dimensional distributions with appropriate learned kernels. Previous work has demonstrated that this kernel learning procedure succeeds, assuming a considerable number of observed samples from each distribution. In realistic scenarios with very limited numbers of data samples, however, it can be challenging to identify a kernel powerful enough to distinguish complex distributions. We address this issue by introducing the problem of meta two-sample testing (M2ST), which aims to exploit (abundant) auxiliary data on related tasks to find an algorithm that can quickly identify a powerful test on new target tasks. We propose two specific algorithms for this task: a generic scheme which improves over baselines and a more tailored approach which performs even better. We provide both theoretical justification and empirical evidence that our proposed meta-testing schemes out-perform learning kernel-based tests directly from scarce observations, and identify when such schemes will be successful.

PDF Abstract NeurIPS 2021 PDF NeurIPS 2021 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here