METAM: Goal-Oriented Data Discovery

18 Apr 2023  ·  Sainyam Galhotra, Yue Gong, Raul Castro Fernandez ·

Data is a central component of machine learning and causal inference tasks. The availability of large amounts of data from sources such as open data repositories, data lakes and data marketplaces creates an opportunity to augment data and boost those tasks' performance. However, augmentation techniques rely on a user manually discovering and shortlisting useful candidate augmentations. Existing solutions do not leverage the synergy between discovery and augmentation, thus under exploiting data. In this paper, we introduce METAM, a novel goal-oriented framework that queries the downstream task with a candidate dataset, forming a feedback loop that automatically steers the discovery and augmentation process. To select candidates efficiently, METAM leverages properties of the: i) data, ii) utility function, and iii) solution set size. We show METAM's theoretical guarantees and demonstrate those empirically on a broad set of tasks. All in all, we demonstrate the promise of goal-oriented data discovery to modern data science applications.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here