MHEntropy: Entropy Meets Multiple Hypotheses for Pose and Shape Recovery

ICCV 2023  ·  Rongyu Chen, Linlin Yang, Angela Yao ·

For monocular RGB-based 3D pose and shape estimation, multiple solutions are often feasible due to factors like occlusion and truncation. This work presents a multi-hypothesis probabilistic framework by optimizing the Kullback-Leibler divergence (KLD) between the data and model distribution. Our formulation reveals a connection between the pose entropy and diversity in the multiple hypotheses that has been neglected by previous works. For a comprehensive evaluation, besides the best hypothesis (BH) metric, we factor in visibility for evaluating diversity. Additionally, our framework is label-friendly, in that it can be learned from only partial 2D keypoints, e.g., those that are visible. Experiments on both ambiguous and real-world benchmarks demonstrate that our method outperforms other state-of-the-art multi-hypothesis methods in a comprehensive evaluation. The project page is at https://gloryyrolg.github.io/MHEntropy.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here