minimax: Efficient Baselines for Autocurricula in JAX

21 Nov 2023  ·  Minqi Jiang, Michael Dennis, Edward Grefenstette, Tim Rocktäschel ·

Unsupervised environment design (UED) is a form of automatic curriculum learning for training robust decision-making agents to zero-shot transfer into unseen environments. Such autocurricula have received much interest from the RL community. However, UED experiments, based on CPU rollouts and GPU model updates, have often required several weeks of training. This compute requirement is a major obstacle to rapid innovation for the field. This work introduces the minimax library for UED training on accelerated hardware. Using JAX to implement fully-tensorized environments and autocurriculum algorithms, minimax allows the entire training loop to be compiled for hardware acceleration. To provide a petri dish for rapid experimentation, minimax includes a tensorized grid-world based on MiniGrid, in addition to reusable abstractions for conducting autocurricula in procedurally-generated environments. With these components, minimax provides strong UED baselines, including new parallelized variants, which achieve over 120$\times$ speedups in wall time compared to previous implementations when training with equal batch sizes. The minimax library is available under the Apache 2.0 license at

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.