Mixture of Virtual-Kernel Experts for Multi-Objective User Profile Modeling

4 Jun 2021  ·  Zhenhui Xu, Meng Zhao, Liqun Liu, Lei Xiao, Xiaopeng Zhang, Bifeng Zhang ·

In industrial applications like online advertising and recommendation systems, diverse and accurate user profiles can greatly help improve personalization. Deep learning is widely applied to mine expressive tags to users from their historical interactions in the system, e.g., click, conversion action in the advertising chain. The usual approach is to take a certain action as the objective, and introduce multiple independent Two-Tower models to predict the possibility of users' action on tags (known as CTR or CVR prediction). The predicted users' high probably attractive tags are to represent their preferences. However, the single-action models cannot learn complementarily and support effective training on data-sparse actions. Besides, limited by the lack of information fusion between the two towers, the model learns insufficiently to represent users' preferences on various tag \textbf{topics} well. This paper introduces a novel multi-task model called Mixture of Virtual-Kernel Experts (MVKE) to learn user preferences on various actions and topics unitedly. In MVKE, we propose a concept of Virtual-Kernel Expert, which focuses on modeling one particular facet of the user's preferences, and all of them learn coordinately. Besides, the gate-based structure used in MVKE builds an information fusion bridge between two towers, improving the model's capability and maintaining high efficiency. We apply the model in Tencent Advertising System, where both online and offline evaluations show that our method has a significant improvement compared with the existing ones and brings about an obvious lift to actual advertising revenue.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here