Modeling and Interpreting Real-world Human Risk Decision Making with Inverse Reinforcement Learning

13 Jun 2019Quanying LiuHaiyan WuAnqi Liu

We model human decision-making behaviors in a risk-taking task using inverse reinforcement learning (IRL) for the purposes of understanding real human decision making under risk. To the best of our knowledge, this is the first work applying IRL to reveal the implicit reward function in human risk-taking decision making and to interpret risk-prone and risk-averse decision-making policies... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.