Multi-Armed Bandit Learning for Content Provisioning in Network of UAVs

18 Dec 2023  ·  Amit Kumar Bhuyan, Hrishikesh Dutta, Subir Biswas ·

This paper proposes an unmanned aerial vehicle (UAV) aided content management system in communication-challenged disaster scenarios. Without cellular infrastructure in such scenarios, community of stranded users can be provided access to situation-critical contents using a hybrid network of static and traveling UAVs. A set of relatively static anchor UAVs can download content from central servers and provide content access to its local users. A set of ferrying UAVs with wider mobility can provision content to users by shuffling them across different anchor UAVs while visiting different communities of users. The objective is to design a content dissemination system that on-the-fly learns content caching policies for maximizing content availability to the stranded users. This paper proposes a decentralized Top-k Multi-Armed Bandit Learning model for UAV-caching decision-making that takes geo-temporal differences in content popularity and heterogeneity in content demands into consideration. The proposed paradigm is able to combine the expected reward maximization attribute and a proposed multi-dimensional reward structure of Top-k Multi-Armed Bandit, for caching decision at the UAVs. This study is done for different user-specified tolerable access delay, heterogeneous popularity distributions, and inter-community geographical characteristics. Functional verification and performance evaluation of the proposed caching framework is done for a wide range of network size, UAV distribution, and content popularity.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here