Multi-Issue Bargaining With Deep Reinforcement Learning

18 Feb 2020  ·  Ho-Chun Herbert Chang ·

Negotiation is a process where agents aim to work through disputes and maximize their surplus. As the use of deep reinforcement learning in bargaining games is unexplored, this paper evaluates its ability to exploit, adapt, and cooperate to produce fair outcomes. Two actor-critic networks were trained for the bidding and acceptance strategy, against time-based agents, behavior-based agents, and through self-play. Gameplay against these agents reveals three key findings. 1) Neural agents learn to exploit time-based agents, achieving clear transitions in decision preference values. The Cauchy distribution emerges as suitable for sampling offers, due to its peaky center and heavy tails. The kurtosis and variance sensitivity of the probability distributions used for continuous control produce trade-offs in exploration and exploitation. 2) Neural agents demonstrate adaptive behavior against different combinations of concession, discount factors, and behavior-based strategies. 3) Most importantly, neural agents learn to cooperate with other behavior-based agents, in certain cases utilizing non-credible threats to force fairer results. This bears similarities with reputation-based strategies in the evolutionary dynamics, and departs from equilibria in classical game theory.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here