Multi-Relational Contrastive Learning for Recommendation

3 Sep 2023  ·  Wei Wei, Lianghao Xia, Chao Huang ·

Personalized recommender systems play a crucial role in capturing users' evolving preferences over time to provide accurate and effective recommendations on various online platforms. However, many recommendation models rely on a single type of behavior learning, which limits their ability to represent the complex relationships between users and items in real-life scenarios. In such situations, users interact with items in multiple ways, including clicking, tagging as favorite, reviewing, and purchasing. To address this issue, we propose the Relation-aware Contrastive Learning (RCL) framework, which effectively models dynamic interaction heterogeneity. The RCL model incorporates a multi-relational graph encoder that captures short-term preference heterogeneity while preserving the dedicated relation semantics for different types of user-item interactions. Moreover, we design a dynamic cross-relational memory network that enables the RCL model to capture users' long-term multi-behavior preferences and the underlying evolving cross-type behavior dependencies over time. To obtain robust and informative user representations with both commonality and diversity across multi-behavior interactions, we introduce a multi-relational contrastive learning paradigm with heterogeneous short- and long-term interest modeling. Our extensive experimental studies on several real-world datasets demonstrate the superiority of the RCL recommender system over various state-of-the-art baselines in terms of recommendation accuracy and effectiveness.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods