Multi-Scale Convolutional-Stack Aggregation for Robust White Matter Hyperintensities Segmentation

13 Jul 2018  ·  Hongwei Li, Jian-Guo Zhang, Mark Muehlau, Jan Kirschke, Bjoern Menze ·

Segmentation of both large and small white matter hyperintensities/lesions in brain MR images is a challenging task which has drawn much attention in recent years. We propose a multi-scale aggregation model framework to deal with volume-varied lesions. Firstly, we present a specifically-designed network for small lesion segmentation called Stack-Net, in which multiple convolutional layers are connected, aiming to preserve rich local spatial information of small lesions before the sub-sampling layer. Secondly, we aggregate multi-scale Stack-Nets with different receptive fields to learn multi-scale contextual information of both large and small lesions. Our model is evaluated on recent MICCAI WMH Challenge Dataset and outperforms the state-of-the-art on lesion recall and lesion F1-score under 5-fold cross validation. In addition, we further test our pre-trained models on a Multiple Sclerosis lesion dataset with 30 subjects under cross-center evaluation. Results show that the aggregation model is effective in learning multi-scale spatial information.It claimed the first place on the hidden test set after independent evaluation by the challenge organizer. In addition, we further test our pre-trained models on a Multiple Sclerosis lesion dataset with 30 subjects under cross-center evaluation. Results show that the aggregation model is effective in learning multi-scale spatial information.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here