Multi-speaker Multi-style Text-to-speech Synthesis With Single-speaker Single-style Training Data Scenarios

23 Dec 2021  ·  Qicong Xie, Tao Li, Xinsheng Wang, Zhichao Wang, Lei Xie, Guoqiao Yu, Guanglu Wan ·

In the existing cross-speaker style transfer task, a source speaker with multi-style recordings is necessary to provide the style for a target speaker. However, it is hard for one speaker to express all expected styles. In this paper, a more general task, which is to produce expressive speech by combining any styles and timbres from a multi-speaker corpus in which each speaker has a unique style, is proposed. To realize this task, a novel method is proposed. This method is a Tacotron2-based framework but with a fine-grained text-based prosody predicting module and a speaker identity controller. Experiments demonstrate that the proposed method can successfully express a style of one speaker with the timber of another speaker bypassing the dependency on a single speaker's multi-style corpus. Moreover, the explicit prosody features used in the prosody predicting module can increase the diversity of synthetic speech by adjusting the value of prosody features.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here