Multi-Task Bidirectional Transformer Representations for Irony Detection

8 Sep 2019  ·  Chiyu Zhang, Muhammad Abdul-Mageed ·

Supervised deep learning requires large amounts of training data. In the context of the FIRE2019 Arabic irony detection shared task (IDAT@FIRE2019), we show how we mitigate this need by fine-tuning the pre-trained bidirectional encoders from transformers (BERT) on gold data in a multi-task setting. We further improve our models by by further pre-training BERT on `in-domain' data, thus alleviating an issue of dialect mismatch in the Google-released BERT model. Our best model acquires 82.4 macro F1 score, and has the unique advantage of being feature-engineering free (i.e., based exclusively on deep learning).

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods