GUNNEL: Guided Mixup Augmentation and Multi-View Fusion for Aquatic Animal Segmentation

12 Dec 2021  ·  Minh-Quan Le, Trung-Nghia Le, Tam V. Nguyen, Isao Echizen, Minh-Triet Tran ·

Recent years have witnessed great advances in object segmentation research. In addition to generic objects, aquatic animals have attracted research attention. Deep learning-based methods are widely used for aquatic animal segmentation and have achieved promising performance. However, there is a lack of challenging datasets for benchmarking. In this work, we build a new dataset dubbed "Aquatic Animal Species." We also devise a novel GUided mixup augmeNtatioN and multi-viEw fusion for aquatic animaL segmentation (GUNNEL) that leverages the advantages of multiple view segmentation models to effectively segment aquatic animals and improves the training performance by synthesizing hard samples. Extensive experiments demonstrated the superiority of our proposed framework over existing state-of-the-art instance segmentation methods.

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.