Multimodal Unrolled Robust PCA for Background Foreground Separation

13 Aug 2021  ·  Spencer Markowitz, Corey Snyder, Yonina C. Eldar, Minh N. Do ·

Background foreground separation (BFS) is a popular computer vision problem where dynamic foreground objects are separated from the static background of a scene. Typically, this is performed using consumer cameras because of their low cost, human interpretability, and high resolution. Yet, cameras and the BFS algorithms that process their data have common failure modes due to lighting changes, highly reflective surfaces, and occlusion. One solution is to incorporate an additional sensor modality that provides robustness to such failure modes. In this paper, we explore the ability of a cost-effective radar system to augment the popular Robust PCA technique for BFS. We apply the emerging technique of algorithm unrolling to yield real-time computation, feedforward inference, and strong generalization in comparison with traditional deep learning methods. We benchmark on the RaDICaL dataset to demonstrate both quantitative improvements of incorporating radar data and qualitative improvements that confirm robustness to common failure modes of image-based methods.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods