NASH: A Simple Unified Framework of Structured Pruning for Accelerating Encoder-Decoder Language Models

16 Oct 2023  ·  Jongwoo Ko, Seungjoon Park, Yujin Kim, Sumyeong Ahn, Du-Seong Chang, Euijai Ahn, Se-Young Yun ·

Structured pruning methods have proven effective in reducing the model size and accelerating inference speed in various network architectures such as Transformers. Despite the versatility of encoder-decoder models in numerous NLP tasks, the structured pruning methods on such models are relatively less explored compared to encoder-only models. In this study, we investigate the behavior of the structured pruning of the encoder-decoder models in the decoupled pruning perspective of the encoder and decoder component, respectively. Our findings highlight two insights: (1) the number of decoder layers is the dominant factor of inference speed, and (2) low sparsity in the pruned encoder network enhances generation quality. Motivated by these findings, we propose a simple and effective framework, NASH, that narrows the encoder and shortens the decoder networks of encoder-decoder models. Extensive experiments on diverse generation and inference tasks validate the effectiveness of our method in both speedup and output quality.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods