Nested Graph Neural Networks

NeurIPS 2021  ·  Muhan Zhang, Pan Li ·

Graph neural network (GNN)'s success in graph classification is closely related to the Weisfeiler-Lehman (1-WL) algorithm. By iteratively aggregating neighboring node features to a center node, both 1-WL and GNN obtain a node representation that encodes a rooted subtree around the center node. These rooted subtree representations are then pooled into a single representation to represent the whole graph. However, rooted subtrees are of limited expressiveness to represent a non-tree graph. To address it, we propose Nested Graph Neural Networks (NGNNs). NGNN represents a graph with rooted subgraphs instead of rooted subtrees, so that two graphs sharing many identical subgraphs (rather than subtrees) tend to have similar representations. The key is to make each node representation encode a subgraph around it more than a subtree. To achieve this, NGNN extracts a local subgraph around each node and applies a base GNN to each subgraph to learn a subgraph representation. The whole-graph representation is then obtained by pooling these subgraph representations. We provide a rigorous theoretical analysis showing that NGNN is strictly more powerful than 1-WL. In particular, we proved that NGNN can discriminate almost all r-regular graphs, where 1-WL always fails. Moreover, unlike other more powerful GNNs, NGNN only introduces a constant-factor higher time complexity than standard GNNs. NGNN is a plug-and-play framework that can be combined with various base GNNs. We test NGNN with different base GNNs on several benchmark datasets. NGNN uniformly improves their performance and shows highly competitive performance on all datasets.

PDF Abstract NeurIPS 2021 PDF NeurIPS 2021 Abstract

Datasets


Task Dataset Model Metric Name Metric Value Global Rank Result Benchmark
Graph Property Prediction ogbg-molhiv Nested GIN+virtual node Test ROC-AUC 0.7834 ± 0.0186 # 29
Validation ROC-AUC 0.8317 ± 0.0199 # 17
Graph Property Prediction ogbg-molhiv Nested GIN+virtual node (ens) Test ROC-AUC 0.7986 ± 0.0105 # 19
Validation ROC-AUC 0.8080 ± 0.0278 # 34
Graph Property Prediction ogbg-molpcba Nested GIN+virtual node (ensemble) Test AP 0.3007 ± 0.0037 # 9
Validation AP 0.3059 ± 0.0056 # 13
Number of params 44187480 # 5
Ext. data No # 1
Graph Property Prediction ogbg-molpcba Nested GIN+virtual node (ens) Test AP 0.3007 ± 0.0037 # 9
Validation AP 0.3059 ± 0.0056 # 13
Graph Property Prediction ogbg-molpcba Nested GIN+virtual node Test AP 0.2832 ± 0.0041 # 24
Validation AP 0.2915 ± 0.0035 # 22

Methods