Neural Morphological Tagging from Characters for Morphologically Rich Languages

21 Jun 2016Georg HeigoldGuenter NeumannJosef van Genabith

This paper investigates neural character-based morphological tagging for languages with complex morphology and large tag sets. We systematically explore a variety of neural architectures (DNN, CNN, CNNHighway, LSTM, BLSTM) to obtain character-based word vectors combined with bidirectional LSTMs to model across-word context in an end-to-end setting... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper