Neural Multi-scale Image Compression

16 May 2018  ·  Ken Nakanishi, Shin-ichi Maeda, Takeru Miyato, Daisuke Okanohara ·

This study presents a new lossy image compression method that utilizes the multi-scale features of natural images. Our model consists of two networks: multi-scale lossy autoencoder and parallel multi-scale lossless coder. The multi-scale lossy autoencoder extracts the multi-scale image features to quantized variables and the parallel multi-scale lossless coder enables rapid and accurate lossless coding of the quantized variables via encoding/decoding the variables in parallel. Our proposed model achieves comparable performance to the state-of-the-art model on Kodak and RAISE-1k dataset images, and it encodes a PNG image of size $768 \times 512$ in 70 ms with a single GPU and a single CPU process and decodes it into a high-fidelity image in approximately 200 ms.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.