Neural Network-Hardware Co-design for Scalable RRAM-based BNN Accelerators

6 Nov 2018  ·  Yulhwa Kim, HyungJun Kim, Jae-Joon Kim ·

Recently, RRAM-based Binary Neural Network (BNN) hardware has been gaining interests as it requires 1-bit sense-amp only and eliminates the need for high-resolution ADC and DAC. However, RRAM-based BNN hardware still requires high-resolution ADC for partial sum calculation to implement large-scale neural network using multiple memory arrays. We propose a neural network-hardware co-design approach to split input to fit each split network on a RRAM array so that the reconstructed BNNs calculate 1-bit output neuron in each array. As a result, ADC can be completely eliminated from the design even for large-scale neural network. Simulation results show that the proposed network reconstruction and retraining recovers the inference accuracy of the original BNN. The accuracy loss of the proposed scheme in the CIFAR-10 testcase was less than 1.1% compared to the original network. The code for training and running proposed BNN models is available at:

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here