Neural Speed Reading via Skim-RNN

Inspired by the principles of speed reading, we introduce Skim-RNN, a recurrent neural network (RNN) that dynamically decides to update only a small fraction of the hidden state for relatively unimportant input tokens. Skim-RNN gives computational advantage over an RNN that always updates the entire hidden state. Skim-RNN uses the same input and output interfaces as a standard RNN and can be easily used instead of RNNs in existing models. In our experiments, we show that Skim-RNN can achieve significantly reduced computational cost without losing accuracy compared to standard RNNs across five different natural language tasks. In addition, we demonstrate that the trade-off between accuracy and speed of Skim-RNN can be dynamically controlled during inference time in a stable manner. Our analysis also shows that Skim-RNN running on a single CPU offers lower latency compared to standard RNNs on GPUs.

PDF Abstract ICLR 2018 PDF ICLR 2018 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods