Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic Programmed Deep Kernels

16 Sep 2020  ·  Alexander Lavin ·

We present a probabilistic programmed deep kernel learning approach to personalized, predictive modeling of neurodegenerative diseases. Our analysis considers a spectrum of neural and symbolic machine learning approaches, which we assess for predictive performance and important medical AI properties such as interpretability, uncertainty reasoning, data-efficiency, and leveraging domain knowledge... Our Bayesian approach combines the flexibility of Gaussian processes with the structural power of neural networks to model biomarker progressions, without needing clinical labels for training. We run evaluations on the problem of Alzheimer's disease prediction, yielding results that surpass deep learning in both accuracy and timeliness of predicting neurodegeneration, and with the practical advantages of Bayesian nonparametrics and probabilistic programming. read more

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here