NNSVS: A Neural Network-Based Singing Voice Synthesis Toolkit

28 Oct 2022  ·  Ryuichi Yamamoto, Reo Yoneyama, Tomoki Toda ·

This paper describes the design of NNSVS, an open-source software for neural network-based singing voice synthesis research. NNSVS is inspired by Sinsy, an open-source pioneer in singing voice synthesis research, and provides many additional features such as multi-stream models, autoregressive fundamental frequency models, and neural vocoders. Furthermore, NNSVS provides extensive documentation and numerous scripts to build complete singing voice synthesis systems. Experimental results demonstrate that our best system significantly outperforms our reproduction of Sinsy and other baseline systems. The toolkit is available at https://github.com/nnsvs/nnsvs.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here