Non-Contact Heart Rate Measurement from Deteriorated Videos

Remote photoplethysmography (rPPG) offers a state-of-the-art, non-contact methodology for estimating human pulse by analyzing facial videos. Despite its potential, rPPG methods can be susceptible to various artifacts, such as noise, occlusions, and other obstructions caused by sunglasses, masks, or even involuntary facial contact, such as individuals inadvertently touching their faces. In this study, we apply image processing transformations to intentionally degrade video quality, mimicking these challenging conditions, and subsequently evaluate the performance of both non-learning and learning-based rPPG methods on the deteriorated data. Our results reveal a significant decrease in accuracy in the presence of these artifacts, prompting us to propose the application of restoration techniques, such as denoising and inpainting, to improve heart-rate estimation outcomes. By addressing these challenging conditions and occlusion artifacts, our approach aims to make rPPG methods more robust and adaptable to real-world situations. To assess the effectiveness of our proposed methods, we undertake comprehensive experiments on three publicly available datasets, encompassing a wide range of scenarios and artifact types. Our findings underscore the potential to construct a robust rPPG system by employing an optimal combination of restoration algorithms and rPPG techniques. Moreover, our study contributes to the advancement of privacy-conscious rPPG methodologies, thereby bolstering the overall utility and impact of this innovative technology in the field of remote heart-rate estimation under realistic and diverse conditions.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here