Non-entailed subsequences as a challenge for natural language inference

29 Nov 2018  ·  R. Thomas McCoy, Tal Linzen ·

Neural network models have shown great success at natural language inference (NLI), the task of determining whether a premise entails a hypothesis. However, recent studies suggest that these models may rely on fallible heuristics rather than deep language understanding. We introduce a challenge set to test whether NLI systems adopt one such heuristic: assuming that a sentence entails all of its subsequences, such as assuming that "Alice believes Mary is lying" entails "Alice believes Mary." We evaluate several competitive NLI models on this challenge set and find strong evidence that they do rely on the subsequence heuristic.

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here